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Abstract— A new invertible digitized model called Discrete
Backlash Operator is proposed to model complex hysteretic
nonlinearities. A discrete backlash operator is formed by
combining multiple elementary virtual gears called discrete
backlash gears. A discrete backlash operator with n discrete
backlash gears has 2 power n possible states. The inverse
model of discrete backlash operator is also developed for a
feedforward controller to control the piezoelectric actuator.

I. INTRODUCTION

Piezoelectric actuators are popular in real-time mi-
cromanipulation applications due to their rapid and
accurate response. Handheld microsurgical devices such
as Micron [1] and iTrem [2] uses piezoelectric actuators
for their micromanipulators. The effective control of
piezoelectric actuators is limited by their undesired
complex hysteretic nonlinearities.

To overcome the limitation due to complex hysteretic
nonlinearities and to achieve the micro-meter scale
accuracy, micromanipulation systems typically deploy
various types of controllers. The controller of an electric
charge control system uses induced charge to control a
piezoelectric actuator instead of applying voltage to it
[3], [4] because the relationship between deformation of a
piezoceramic and the induced charge has less hysteresis.
Requirement of specialized equipments to measure and
amplify the induced charge makes this approach unsuit-
able for small, space constrained systems such as our
handheld instrument.

Another approach uses closed-loop control systems
to reduce the error caused by nonlinear hysteresis of
piezoelectric actuators. This approach also is not a
suitable choice to control micromanipulator for real-
time high frequency hand tremor compensation because
of requirement for accurate displacement sensor and
intrinsic stability problem [5].

Feedforward controllers improve the accuracy of hys-
teretic actuator response by implementing inverse func-
tion of a mathematical hysteresis model that closely
represents the complex hesteretic behaviour of the actu-
ator. Due to its simplicity and analytically computable
inverse, Prandtl-Ishlinskii model [6] is well known among
several mathematical models that have been proposed to
describe the complex hysteretic nonlinearities.
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Several derivative models based on Prandtl-Ishlinskii
model have been proposed. To account for the hysteretic
nonlinearity at varying actuation frequency, Ang et al.
[7] proposed a rate-dependent modified Prandtl-Ishlinskii
operator. Tan et al. [8] proposed an extended Prandtl-
Ishlinskii operator to tackle ill-conditioned situations.
Jiang et al. [9] proposed a modified Prandtl-Ishlinskii
operator to model the asymmetric hysteresis nonlinearity
of piezoelectric actuators.

Unlike existing approaches, a new digitized model for
hysteretic nonlinearity is proposed in this paper. The
proposed model and its inverse are simpler than the
Prandtl-Ishlinskii model while maintaining the compara-
ble modeling accuracy. The amount of computation and
calculation time are also lesser.

II. Modeling of Hysteresis

In this paper, a new model called Discrete Back-
lash Operator is proposed to model complex hysteretic
nonlinearities. A discrete backlash operator is formed
by combining multiple elementary virtual gears called
discrete backlash gears. An elementary discrete backlash
gear has two properties, ∆X and ∆Y , to define its input
and output characteristics. It also has a bistable state, b,
which can be either 0 or 1. A discrete backlash operator
with n discrete backlash gears has 2n possible states. The
current state of discrete backlash operator is represented
by a binary number (B) as shown in (1).

B = bn−1 . . . b1b0 (1)

where b0 is the state of the least significant gear and bn−1

is that of the most significant gear. A discrete backlash
operator has the following variables that depend on its
current state.

X The input value that corresponds to the current
state. The value of X can be represented by (2).

Y The output value that corresponds to the cur-
rent state. The value of Y can be represented
by (3).

S The number that identifies the index of the least
significant one bit of the current state.

Z The number that identifies the index of the least
significant zero bit of the current state.

XB = X0 +

n−1∑
i=0

bi ×∆Xi (2)



YB = Y0 +

n−1∑
i=0

bi ×∆Yi (3)

where X0 and Y0 are the X and Y coordinates of the
operator when its state, B, is zero.

The value of S is found by using a bitwise operation
called find first set. Similarly, the bitwise operation
find first zero is used to find the value of Z. They
are common operations in digital computing. Many
computer architectures include instructions implemented
in hardware to rapidly perform these operations. If these
operations are not available in hardware, they can be
efficiently implemented in software by using an algorithm
such as de Bruijn Sequences [10].

S and Z are obtained from the current state B as
follows.

S = f1(B) (4)

Z = f0(B) (5)

where f1 is find first set operation and f0 is find first zero
operation. The returned values of f1(0) and f0(2n − 1)
for a discrete backlash operator are defined as n.

A state of a discrete backlash operator can change
to either one of its two neighbours, upper state or lower
state. When a current sate B goes up to next upper state,
its bit bZ is set. The relations between the properties of
the current state, Bk, and the next state, Bk+1 can be
represented recursively as follows.

XBk+1
= XBk

+∆XZ (6)

YBk+1
= YBk

+∆YZ (7)

Similarly, when it goes down to next lower state, its
bit bS is cleared. The relations between the properties
of the next state and the current state are as follows.

XBk+1
= XBk

−∆XS (8)

YBk+1
= YBk

−∆YS (9)

For the piecewise linear representation of a hysteresis
curve shown in Fig. 1, there are two linear segments as
the curve goes up from the bottom to the top. Therefore,
it can be represented by two discrete backlash gears. The
first segment corresponds to the least significant gear and
the last segment corresponds to the most significant gear.

In general, a discrete backlash operator with n discrete
backlash gears is represented by

H =

[
∆X0 . . . ∆Xn−1

∆Y0 . . . ∆Yn−1

]
(10)

where the n columns of the matrix represent n discrete
backlash gears. A discrete backlash operator with three
gears has eight possible states as shown in Fig. 2.

Fig. 1. Hysteresis curve for discrete backlash operator with two
gears.

Fig. 2. Hysteresis curve for discrete backlash operator with three
gears.

Each time a discrete backlash operator with current
state Bk receives an input, it performs the following
procedure to produce the corresponding output.

1. If the input value, x, is greater than or equal
to XBk

and less than XBk
+∆XZ , the value of

the output y is calculated using (11).
2. If the input value, x, is greater than or equal to

XBk
+∆XZ , change the state of the operator to

its upper neighbour by setting bZ , update the
value of XBk

and YBk
using (6) and (7), and

repeat the procedure.
3. If the input value, x, is less than XBk

and
greater than XBk

−∆XS , the value of the output
y is calculated using (12).

4. If the input value, x, is less than or equal to
XBk

− ∆XS , change the state of the operator
to its lower neighbour by clearing bS , update



the value of XBk
and YBk

using (8) and (9),
and repeat the procedure.

y = YBk
+

∆YZ

∆XZ
× (x−XBk

) (11)

y = YBk
+

∆YS

∆XS
× (x−XBk

) (12)

III. Discrete Point Operator
The output of the discrete backlash operator has odd

symmetry property to the centre point of the hysteresis
loop. In fact, most of the hysteresis loops produced by
real actuators are not symmetric. Therefore, another
operator that represents asymmetrical, memory free non-
linearities is usually combined with such a symmetrical
hysteresis operator to overcome the problem. In this
section, another modeling technique called discrete point
operator is proposed which is similar to the discrete
backlash operator to model memory free nonlinearities.

A discrete point operator is composed of a certain
number of points each with two properties ∆X and
∆Y to represent the input and output relationship. The
current state of a discrete point operator with order
m is represented by a number, C. The range of C is
0 ≤ C ≤ (m − 1). A discrete point operator with three
linear segments is shown in Fig. 3.

Fig. 3. Nonlinear curve for discrete point operator with three
points.

The input and output values corresponding to the
current state, C, of a discrete point operator is as follows.

XC = X0 +

C−1∑
i=0

∆Xi; C = 1, . . . ,m− 1 (13)

YC = Y0 +

C−1∑
i=0

∆Yi; C = 1, . . . ,m− 1 (14)

where X0 and Y0 are the X and Y coordinates of the
operator when its state, C, is zero.

In general, a discrete point operator with m segments
is represented by

S =

[
∆X0 . . . ∆Xm−1

∆Y0 . . . ∆Ym−1

]
(15)

where each column represents each point of the operator.
Each time a discrete point operator with current state
C receives an input, it performs the following procedure
to produce the corresponding output.

1. If the input value, x, is greater than or equal to
XC and less than or equal to XC +∆XC , the
value of the output y is calculated using (16).

2. If the input value, x, is greater than XC+∆XC ,
change the state of the operator to its upper
neighbour by increasing C if it is less than
m − 1, update the value of XC and YC by
adding ∆XC and ∆YC respectively, and repeat
the procedure.

3. If the input value, x, is less than XC and
C is greater than 0, change the state of the
operator to its lower neighbour by decreasing C,
update the value of XC and YC by subtracting
∆XC and ∆YC respectively, and repeat the
procedure.

y = YC +
∆YC

∆XC
× (x−XC) (16)

IV. Inverse Model
The inverse model of the discrete backlash operator

produces the hysteresis path which is reflection of the
original path along the 45◦ line. A linear response is
obtained by cascading the inverse hysteresis operator Γ−1

as a feedforward controller with the actual hysteresis,
which is represented by the hysteresis operator Γ. The
proposed model for the inverse feedforward controller is
illustrated in Fig. 4.

Fig. 4. Block diagram of the inverse discrete backlash operator
as a feedforward controller.

The parameters of the inverse discrete backlash opera-
tor and the inverse discrete point operator can be found
by simply exchanging ∆X with ∆Y for each of their
basic element.

∆X ′
i = ∆Yi; i = 0, . . . , n− 1 (17)

∆Y ′
i = ∆Xi; i = 0, . . . , n− 1 (18)

Due to its recursive nature, the amount of calculation
for discrete backlash operator does not depend on the



number of segments, n, while that of PI operator is
directly proportional to the order, n. As a result, the
amount of calculation required for a feedforward con-
troller using discrete backlash operator and discrete point
operator is much lesser than that of PI and dead-zone
operator.

V. Experimental Results
In this section, the hysteretic nonlinearity of a multi-

layered piezoceramic, PICMA P-885.91 (Physik Instru-
mente, Karlsruhe, Germany), is modeled using discerete
backlash operator. Two experiments have been per-
formed. The first experiment is to observe the behaviour
of the piezoelectric actuator and to obtain the parameters
of the model. The second experiment is to test the
performance of the feedforward controller deploying the
inverse discrete backlash operator.

At first, the responses of the piezoelectric actuator
to periodic control inputs is measured experimentally
to find the hysteresis model parameters. The control
input applied to the piezoelectric actuator to model its
behaviour is 1 Hz sinusoidal with a full-scale 3.6 V peak
to peak as shown in Fig. 5. The measured piezoelectric
actuator response to that input is illustrated in Fig. 6
with red line and in Fig. 7 with green dotted line. Least-
squares fitted discrete backlash operator model (n=25) is
superimposed on the measured response with blue solid
line. The values of K, X0, and Y0 are 12.53, 0, and -22.97
respectively.
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Fig. 5. Control Input which is applied to the piezoelectric actuator
to model the behaviour of its hysteretic nonlinearity.
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Fig. 6. The response of the piezoelectric actuator versus time.
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Fig. 7. Light green dashed lines are the measured piezoelectric
actuator response and blue solid lines are the identified discrete
backlash operator (n=25) model.

To test the performance of the feedforward controller
deploying the inverse model, a 1 Hz sinusoidal signal
with gradually increasing amplitude from 0 µm to 20
µm is used as the control input and the response of the
piezoelectric actuator is measured. The RMSE between
the desired control input and the measured actuator
response without compensation is 1.68 µm (Fig. 8, Fig. 9,
and Fig. 10).
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Fig. 8. Solid blue lines are desired control input and red dotted
lines are the response of the piezoelectric actuator when inverse
feedforward controller is not deployed.

0 1 2 3 4 5
−4

−2

0

2

4

6

Time (s)

D
is

pl
ac

em
en

t (
µm

)

Fig. 9. Error between the desired control input and the actual
actuator response when inverse feedforward controller is not de-
ployed.

Thereafter, a feedforward controller deploying the
inverse model is used to drive the piezoelectric actuator
to obtain an identity mapping between the desired ac-
tuator output and actual actuator response. The inverse
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Fig. 10. Input and output displacement relationship when inverse
feedforward controller is not deployed.

operator is obtained by using the method mentioned in
the previous section. The RMSE between the desired
control input and the measured actuator response with
compensation is reduced to 0.58 µm(Fig. 11, Fig. 12, and
Fig. 13).
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Fig. 11. Solid blue lines are desired control input and red dotted
lines are the response of the piezoelectric actuator when inverse
feedforward controller is deployed.
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Fig. 12. Error between desired control input and the actual
actuator response when inverse feedforward controller is deployed.

VI. Conclusion
The discrete backlash operator is proposed as an

alternative to Prandtl-Ishlinskii modeling approach. The
advantages of the discrete backlash operator are its
simpler and intuitive model, less amount of calcula-
tion, and simpler parameter identification. The proposed
model can be easily extended or modified to handle its
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Fig. 13. Input and output displacement relationship when inverse
feedforward controller is deployed.

response behaviour for out of range input. The amount of
calculation is significantly reduced for a large value of n.
For a smaller n, the output values for their corresponding
states can be stored in a lookup table and the amount
of calculation can be reduced further. Due to its simple
nature, the discrete backlash operator is suitable for
applications that requires very high sampling rate or for
the systems using low-end digital hardware.
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